Органические вещества клетки

Существует 4 класса органических веществ, входящих в состав клеток: белки, жиры, углеводы и нуклеиновые кислоты.

 

Биополимеры

Биологические полимеры – высокомолекулярные органические соединения, молекулы которых состоят из большого числа повторяющихся звеньев – мономеров. К биополимерам относятся белки (состоят из аминокислот), нуклеиновые кислоты (состоят из нуклеотидов), полисахариды и их производные (состоят из моносахаридов).

По форме биополимеров могут быть линейными (белки, нуклеиновые кислоты, целлюлоза) или ветвящимися (гликоген, крахмал).

Свойства биополимеров

1. Кооперативность

 

Тесная взаимосвязь всех функциональных групп, то есть взаимодействие одних групп полимера изменяет характер взаимодействия других его групп. Например, связывание кислорода белком эритроцитов крови – гемоглобином.

2. Способность образовывать интерполимерные комплексы

 

Такие комплексы могут возникать как между отдельными частями молекулы, так и между разными молекулами. Благодаря образованию комплексов осуществляются биосинтез белков, нуклеиновых кислот, регуляция обмена веществ и другие биологические процессы.

 

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

 

Углеводы

Углеводы - органические вещества, в состав которых входят углерод, кислород и водород. Образуются в процессе фотосинтеза из воды и углекислого газа. Различают - моносахариды (состоят из одной молекулы) (глюкоза, рибоза и т.д.), дисахариды - соединение двух молекул (сахароза, мальтоза) и полисахариды - в их состав входит много молекул сахара (крахмал, гликоген, клетчатка, пектин, инулин, хитин). 

Функции углеводов

1. Входят в состав многих органических веществ (рибоза - в состав РНК, АТФ, ФАД, НАД, НАДФ, дезоксирибоза - в состав ДНК)

2. Глюкоза - является источником энергии (окисляется при дыхании)

3. Многие углеводы являются запасными веществами - крахмал у растений, гликоген - у грибов и животных

4. Входят в состав многих компонентов клеток и тканей (гликокаликс, гепарин, кликопротеины, пектины, полисахариды, гемицеллюлоза, хитин, муреин, тейхоевые кислоты)

5. Защитная - в составе гликокаликса участвует в процессе клеточного распознавания, входят в состав иммуноглобулинов, входят в состав камеди (выделяется при повреждении стволов) и в состав клеточной стенки многих организмов

 

Белки

Белки - это органические вещества-полимеры, мономерами которых являются аминокислоты (гемоглобин, альбумин, коллаген, эластин и многие другие).

Белки имеют 4 структуры

08010502

Первичная - линейная последовательность аминокислот, соединенная в полипептиднуй цепь

Вторичная - спираль, состоящая из двух цепей, соединенных водородными связями

Третичная - глобула или фибриллярная структура (уложенные слои или суперскрученная спираль). Ионные, водородные, ковалентные (дисульфидные мостики), гидрофобные взаимодействия между составными частями

Четвертичная - несколько глобул или микрофибриллы, соединенные силами межмолекулярного притяжения

Бывают: собственно белки и ферменты.

Ферменты - биологические катализаторы, не только ускоряют, но и осуществляют большиснтво реакций в живых организмах.

Ферменты – это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при умеренной температуре, нормальном давлении и нейтральной среде. В таких условиях реакции синтеза или распада веществ протекали бы очень медленно, если бы не подвергались воздействию ферментов. Ферменты ускоряют реакцию без изменения ее общего результата за счет снижения энергии активации. Это означает, что в их присутствии требуется значительно меньше энергии для придания реакционной способности молекулами, которые вступают в реакцию. Ферменты отличаются от химических катализаторов высокой степенью специфичности, то есть фермент катализирует только одну реакцию или действует только на один тип связи. Скорость ферментативных реакций зависит от многих факторов – природы и концентрации фермента и субстрата, температуры, давления, кислотности среды, наличия ингибиторов и т.д.

Классификация ферментов

1. Оксидоредуктазы

Окислительно-восстановительные реакции: перенос атомов водорода (Н) и кислорода (О) или электронов от одного вещества к другому, при этом окисляется первый и восстанавливается второй. Участвуют во всех процессах биологического окисления.

2. Трансферазы

Перенос группы атомов (метильной, ацильной, фосфатной или аминогруппы) от одного вещества к другому. Например, перенос остатков фосфорной кислоты от АТФ на глюкозу или фруктозу под действием фототрансфераз.

3. Гидролазы

Реакции расщепления сложных органических соединений на более простые путем присоединения молекул воды в месте разрыва химической связи (гидролиз). Например, амилаза (гидролизует крахмал), липаза (расщепляет жиры), трипсин (расщепляет белки) и др.

4. Лиазы

Негидролитическое присоединение к субстрату или отщепление от него группы атомов. При этом могут разрываться связи С-С, C-N, C-O, C-S. Например, декарбоксилаза отщепляет карбоксильную группу.

5. Изомеразы

Внутримолекулярные перестройки, превращение одного изомера в другой (изомеризация).

6. Лигазы (синтетазы)

Реакции соединения двух молекул с образованием новых связей с использованием энергии АТФ. Например, фермент валин-т-РНК-синтеза, под действием которого образуется комплекс валин-т-РНК.

image4

На рисунке представлен механизм действия фермента. В молекуле каждого фермента имеется активный центр – это один или более участков, в которых происходит катализ за счет тесного контакта между молекулами фермента и специфического вещества (субстрата). Активным центром выступает или функциональная группа (например, ОН-группа), или отдельная аминокислота. Активный центр может формироваться связанными с ферментом ионами металлов, витаминами и другими соединениями небелковой природы – коферментами или кофакторами. Форма и химическое строение активного центра таковы, что с ним могут связываться только определенные субстраты в силу их идеального соответствия (комплементарности) друг другу.

Молекула фермента изменяет глобулярную форму молекулы субстрата. Молекула субстрата, присоединяясь к ферменту, тоже в определенных пределах изменяет свою конфигурацию для увеличения реакционности функциональных групп центра.

На заключительном этапе химической реакции фермент-субстратный комплекс распадается с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр может принимать новые молекулы субстрата.

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

 

Функции белков

 

1. Ферментативная - ускоряют, а в большинстве случаев осуществляют биохимические реакции в организме

2. Структурная - входят в состав всех мембран, являются компонентом соединительной ткани (костей, хрящей, сухожилий, кожи, волос, ногтей), входят в состав слизистых секретов (мукопротеины). Из белков состоят капсиды вирусов. Входят в состав каружного скелета насекомых.

3. Двигательная - из белков состоят микротрубочки (тубулин), двигательный аппарат жгутиков, актин и миозин - сократительные белки мышц.

4. Транспортная - транспорт через мембрану и внутри клетки, а также белки крови (гемоглобин переносит кислород, гемоцианин переносит кислород в крови беспозвоночных, сывороточный альбумин переносит жирные кислоты, глобулины переносят ионы металлов и гормоны)

5. Защитная - белки иммунитета (интерфероны), белки крови (предотвращают кровопотерю), антиоксиданты (гасят активные формы кислорода)

6. Рецепторная - белки гликокаликса (отвечают за клеточную совместимость), светочувствительные ферменты сетчатки глаза, фитохром у растений (реагирует на изменение длины светового дня)

7. Запасающая - белок-ферритин запасает железо в печени, селезенке, миоглобин запасает кислород в мышцах позвоночных

8. Питательная - белки - источники аминокислот

9. Регуляторная - многие гормоны являются белками (инсулин, соматотропин, пролактин, глюкагон)

10. Антибиотическая - многие антибиотики (противомикробные препараты) являются белками (грамицидин S, актиномицин)

11. Токсическая - многие токсины (опасные для живых организмов вещества) являются белками - ботулинический токсин, столбнячный, холерный, токсины грибов и пчел

 

 

Нуклеиновые кислоты: ДНК и РНК

В 1953 г. английские ученые Дж. Уотсон и Ф. Крик предложили модель пространственной струк- туры ДНК. Они показали, что ДНК состоит из двух полинуклеотидных цепей, спирально закрученных одна вокруг другой. Двойная спираль стабилизирована водородными свя- зями между азотистыми основаниями разных цепей так, что против аденина одной цепи всегда стоит ти- мин другой, а гуанина — цитозин. Многократное повторение этих связей придает большую устойчивость двойной спирали ДНК. При опреде- ленных условиях (действие кислот, щелочей, нагревание и т. п.) происходит денатурация ДНК — разрыв водородных связей между компле- ментарными азотистыми основани- ями. Денатурирован­ная ДНК может восстановить двуспи­ральное строение благодаря установлению водородных связей между комплементарными нуклеотидами — этот процесс называется ренатурацией.

Строение ДНК:

 015

 

ДНК составляют 4 типа азотистых оснований : А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).

Нуклеотиды соединяются по принципу комплементарности: А=Т, ГΞЦ

 

Функции ДНК: 

 

1. Хранение генетической информации

2. Репликация ДНК

3. Синтез РНК

 

 

Строение РНК:

 

139

РНК бывает: 

1. Рибосомальной (входит в состав рибосом)

2. Транспортной (приносит аминокислоты к рибосомам во время синтеза белка)

3. Информационной (передает информацию о первичной структуре белка на рибосомы)

 

Принцип комплементарности – избирательное соединение нуклеотидов; свойство, которое лежит в основе образования новых молекул ДНК на базе исходной. Против аденина одной цепи всегда располагается тимин другой цепи, против гуанина – цитозин и наоборот. Таким образом, пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными (пространственное взаимное соответствие), или комплементарными.

Образование полимера РНК происходит так же, как и у ДНК. Молекула РНК синтезируется на одной из цепочек ДНК-матрицы по принципу комплементарности. Например, против Г молекулы ДНК становится Ц молекулы РНК, против Ц молекулы ДНК – Г молекулы РНК, против Т молекулы ДНК – А молекулы РНК, а против А молекулы ДНК – У молекулы РНК (вместо тимина РНК несет урацил).

 

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

 

Правило Чаргаффа: у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гауниловых – числу цитидиловых.

Первое правило: А/Т = Г/Ц = 1.

Второе правило: А + Г = Ц + Т.

Третье правило: А + Ц = Г + Т.

Чаргафф не смог полностью объяснить свои правила, основанные на результатах тщательной аналитической работы с различными образцами ДНК. Однако уже в 1953 г. Это сделали молодые ученые Д. Уотсон и Ф. Крик. Они создали структурную модель молекулы ДНК.

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

 

Липиды

 

Липиды - жироподобные органические вещества, нерастворимые в воде, но растворимые в неполярных органических растворителях (бензоле, бензине и т.д.).

Состоят из глицерина и жирных кислот, при этом глицериновые головки являются гидрофильными, а углеводородные хвосты - гидрофобными. Таким образом, образуется в мембране билипидный слой, через который диффундирует вода и другие вещества.

 

Строение липидов: 

 

19

 

Функции липидов:

 

1. Энергетическая - при окислении липидов выделяется много энергии

2. Резервная - жиры являются запасным веществом и в ходе окисления жиров выделяется вода, которая очень важны, например, для жителей пустыни

3. Структурная - из фосфолипидов состоят мембраны всех живых организмов, гликолипиды участвуют в межклеточных контактах в тканях животных, сфинголипиды обеспечивают электрическую изоляцию аксона, создавая условия для быстрого прохождения импульса, пчелы из воска строят соты

4. Защитная - термоизоляция и амортизация, воски являются водоотталкивающими веществами у растений, гликолипиды участвуют в распознавании токсинов

5. Регуляторная - некоторые гормоны - липиды (тестостерон, прогестерон, кортизон), существуют жирорастворимые витамины (A, D, E, K), гибберелины - регуляторы роста растений

 

 

Разнообразие липидов

 

Фосфолипиды - содержат остаток фосфорной кислоты, входят в состав клеточных мембран.

Гликолипиды - соединения липидов с углеводами. Являются составной частью тканей мозга и нервных волокон.

Липопротеиды - комплексные соединения разнообразных белков с жирами.

Стероиды - важные компоненты половых гормонов, витамина Д.

Воска - выполняют защитную функцию: у млекопитающих - смазывают кожу и волосы, у птиц - придают перьям водоотталкивающие свойства, у растений - предотвращают чрезмерное испарение воды.

 

 

АТФ

 

 Аденозинтрифосфорная кислота (АТФ) — нуклеотид, в состав которого входит азотистое основание аденин, углевод рибоза и три остатка фосфорной кислоты. Молекула АТФ является универсальным химическим аккумулятором энергии в клетках. Остатки фосфорной кислоты связаны макроэргичными связями. Когда от АТФ отщепляется один остаток фосфорной кислоты, образуется АДФ — аденозиндифосфорная кислота и выделяется 40 кДж энергии